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Abstract. We consider propagation of waves in a disordered medium, extending the treatment
of quasi one-dimensional systems, due to Dorokhov and to Melloet al to include absorption.
In particular, we obtain within this approach the probability distribution of the reflection matrix
for a semi-infinite system, as a function of the ratio of the mean free paths for absorption and
scattering.

1. Introduction

There has been sustained theoretical and experimental interest [1] during the last decade
in the multiple scattering of classical waves in both ordered and random media. From an
early stage [2], extensive use has been made of analogies between phenomena occurring
for classical waves and their counterparts in disordered electronic systems [3]. These
phenomena include the existence of photonic band gaps, speckle patterns and enhanced
backscattering [1].

In studies of scattering in random media, an important objective is to understand the
statistical properties of reflected and transmitted waves, as a function of system geometry and
disorder strength. Fluctuations in these quantities are responsible for speckle patterns in the
optical context, and for conductance fluctuations in mesoscopic conductors [1]. Scattering
of electromagnetic waves is of particular interest in connection with fluctuations, because
it is possible experimentally [4] to get more detailed information for this case than for
electron transport. Specifically, spatial correlations in intensity can be obtained, whilst from
conductance measurements one learns only about integrated transmission probabilities.

Many different theoretical approaches have been applied to these problems, including
diagrammatic methods [5], Langevin techniques [6] and random matrix theory [7–10]. The
last of these, although it involves strong simplifying assumptions, provides a framework
within which a reasonably complete description of statistical properties can be derived.
The version of random matrix theory with the clearest microscopic foundations is due to
Dorokhov [8] and to Melloet al [9]. It has at its centre a Fokker–Planck equation (known
as theDMPK equation) for the evolution of scattering properties with sample length. The
main aim of the present paper is to generalize this approach to include absorption as well
as multiple scattering.

The combined consequences of absorption and multiple scattering for fluctuations in
the transmission properties of disordered waveguides have been studied previously using
other methods, by Stephen [11], and by Pnini and Shapiro [12], who were able to account
in detail [13] for microwave measurements. The transmission behaviour that has been the
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focus of this earlier work turns out to be difficult to obtain from a Fokker–Planck equation.
Instead we concentrate on reflection properties. We consider systems in which the number
of scattering modes,N , is arbitrary. The special case of of a strictly one-dimensional system
N = 1 has been solved recently by Freilikheret al [14]

In the following, we define our model in section 2, derive a Fokker–Planck equation in
section 3, and discuss its solution in section 4.

2. A model for multiple scattering in the presence of absorption, in quasi
one-dimensional systems

In this section we generalize the quasi one-dimensional scattering model of Dorokhov [8]
and Mello et al [9] to include absorption. The model provides an idealized description of
a waveguide or optical fibre along whichN modes can propagate in each direction. Our
aim is to calculate the scattering properties of such a system as a function of its length. To
this end, first consider the scattering and absorption that occur in a section of infinitesimal
length δl. Wave amplitudes in each mode and on each side of this section are related by
an S-matrix. Let theN amplitudes of waves incident in each mode from one side form
the components of a vectoral . Similarly, let the outgoing wave amplitudes on the other
side be the components ofar ; and letbl andbr , respectively, be the outgoing and incident
amplitudes for waves travelling in the opposite direction. In terms of the 2N ×2N S-matrix(

bl

ar

)
= S

(
al

br

)
. (1)

Sinceδl is infinitesimal, we expect thatar ' al andbl ' br . It is therefore convenient
to define a transformedS-matrix, S ′, which is close to the 2N × 2N unit matrix. Let

S ′ =
(

0 1
1 0

)
S ≡

(
τ ρ ′

ρ τ ′

)
(2)

whereρ and τ are the reflection and transmission matrices for waves incident from (say)
the left, andρ ′, τ ′ are the corresponding matrices for waves incident from the right.S ′

can be parametrized asS ′ = exp(iX), with X infinitesimal. Without absorption,S, and
henceS ′, is unitary, and soX is Hermitian. In the presence of absorption it is thus natural
to separateX into Hermitian and anti-Hermitian parts by writingX = H + iG, whereH

andG are 2N × 2N Hermitian matrices. We treat scattering and absorption as independent
processes, and so discuss the properties ofH andG separately. Supposing that scattering
processes in isolation are time-reversal symmetric,H has the form [15]

H = µ

(
x y

y∗ x∗

)
(3)

where x is an N × N Hermitian matrix andy is an N × N symmetric matrix. The
infinitesimalµ is related to the lengthδl of the section of waveguide under consideration:
since the scatteringprobability, which is of order|µ|2, should be proportional to length, we
require the scatteringamplitudeto be of orderµ ≡ (δl)1/2.

To model random scattering, we takex and y statistically independent in successive
sections. For mathematical simplicity, we follow Dorokhov [8] and Melloet al [9], and
consider quasi one-dimensional systems in which the distributions ofx andy are invariant
under arbitrary unitary transformations that mix theN modes of the waveguide. Physically,
this means that we ignore any structure in the directions transverse to the length of the
waveguide: it should be a good approximation provided the transverse dimensions are
not greater than the mean free path for scattering. Because we takeδl infinitesimal,
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it is necessary only to specify the first and second moments ofx and y. We set [15]
〈x〉 = 〈y〉 = 〈xy〉 = 〈yy〉 = 0 and

〈yαβy∗
γ δ〉 = δαγ δβδ + δαδδβγ

N + 1
(4)

〈xαβx∗
γ δ〉 = δαγ δβδ

N
(5)

where the subscripts are channel indices. Note that, with this choice, the mean free path
for scattering is implicitly taken as the unit of length.

Turning to absorption, if the outgoing flux is never to be greater than the incoming flux,
it is necessary that the eigenvalues ofS†S ≡ S ′†S ′ have modulus6 1. At lowest order in
δl, this implies that the eigenvalues of i(X − X†) ≡ −2G should be negative. Since the
probability for absorption should be proportional to the lengthδl ≡ µ2, and since we wish
to retain the invariance of the model under unitary transformations that mix modes, we set

〈G〉 = aµ21 (6)

where1 denotes the 2N × 2N unit matrix anda parametrizes the strength of absorption:
specifically, 1/a is the absorption length in units of the scattering mean free path. The
constraint that the eigenvalues of−2G are negative for every realization ofG, together
with the fact that the first moment is of orderµ2, implies that higher cumulants ofG are
of higher order inµ, and therefore irrelevant in the limitµ → 0.

Summarizing, to orderµ2 we obtain from our definition ofS ′ and expressions forH
andG

S ′ =
(

1 + iµx − µ2a1 − 1
2µ2(yy∗ + x2) iµy − 1

2µ2(xy + yx∗)
iµy∗ − 1

2µ2(y∗x + x∗y∗) 1 + iµx∗ − µ2a1 − 1
2µ2(y∗y + x∗2)

)
(7)

in which 1 is theN × N unit matrix.

3. Fokker–Planck equation for the evolution of the reflection matrix with system
length

We next derive a Fokker–Planck equation for the evolution with system length of the
reflection matrix of the model introduced above. One can, of course, describe scattering
for the system as a whole using a 2N × 2N S ′-matrix similar to that for a short section. It
consists of fourN × N blocks:

S ′ =
(

t r ′

r t ′

)
(8)

wherer, t , r ′ and t ′ are reflection and transmission matrices for waves incident from each
side, in analogy with (2). In a system with time-reversal symmetry and no absorption, the
reflection and transmission matrices can be parametrized as [9]

r = −vT31/2v t = u11/2v

r ′ = u31/2uT t ′ = vT11/2uT
(9)

whereu andv are unitary, and3 and1 are diagonal, with3+1 = 1 from flux conservation.
In the presence of absorption, the situation is more complicated. In particular, the

unitary matrices appearing in the polar decomposition oft and t ′ are, in general, different
from those appearing in the decomposition ofr and r ′. As a result we have been unable
to calculate the transmission properties of our model. The reflection properties, however,
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can be obtained in the following way, from an extension of the Dorokhov–Mello–Peyrera–
Kumar [8, 9] (DMPK) equation. Considerr ′: we shall show that the decomposition of (9)
remains appropriate in a system with absorption and derive a Fokker–Planck equation for
the evolution with system length of the diagonal elements,3α, of 3.

Figure 1. Picture of the model showing the addition of an extra slice to a sample.

Imagine increasing the system length by an amountδl, adding an extra section from the
right, as sketched in figure 1. The reflection matrix,r ′, of the longer system is given by the
multiple scattering series

r ′
f = r ′ + δr ′ = ρ ′ + τ(r ′ + r ′ρr ′ + · · ·)τ ′. (10)

Substituting forρ ′, τ andτ ′ from (2), we obtain

r ′
f = r ′ + δr ′ = r ′ + iµ[y + xr ′ + r ′x∗ + r ′y∗r ′]

+µ2[−2ar ′ − 1
2(yy∗ + x2)r ′ − 1

2r ′(y∗y + x∗2) − xr ′x∗] (11)

where we have retained all terms to orderµ, and those at orderµ2 that have a non-zero
average; omitted terms make no contribution to the Fokker–Planck equation we derive.
Note that, ifr ′T = r ′, thenr ′T

f = r ′
f , so that ifr ′ = u31/2uT, thenr ′

f can be written similarly
as r ′

f = uf 3
1/2
f uT

f . Let δ3 = 3f − 3. We use a perturbative calculation to orderµ2 to
calculateδ3 from the eigenvalues ofr ′†

f r ′
f and average the result, which is a function ofx

andy, according to (4), to obtain

〈δ3α〉 = µ2

[
− 4a3α + 2

N + 1
(1 − 3α)2 + 2

N + 1

∑
β 6=α

3α(1 − 3α)(1 − 3β)

3α − 3β

]
(12)

and

〈δ3αδ3β〉 = µ2 4

N + 1
δαβ3α(1 − 3α)2. (13)

By standard arguments (see, for example, [16]) the probability distribution of{3α}
evolves with sample length,L, according to a Fokker–Planck equation with drift and
diffusion coefficients,D̃α andD̃α,β given by

D̃α = 1

µ2
〈δ3α〉 D̃αβ = 1

2µ2
〈δ3αδ3β〉. (14)

For ease of comparison with previous work, we transform to the variables{λα}, defined
by 3 = λ/(1 + λ), and introduce a rescaled system length,t = L/(N + 1). In these
variables, the drift and diffusion coefficients,D̂α andD̂αβ are

D̂α = −4a(N + 1)λα(1 + λα) + 2(1 + 2λα) + 2
∑
β 6=α

λα(1 + λα)

λα − λβ

(15)

D̂αβ = 2δαβλα(1 + λα). (16)
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The joint probability distribution of{λα}, W(λ), hence evolves with system lengtht
according to

∂W

∂t
=

[
−

∑
α

∂

∂λα

D̂α +
∑
αβ

∂2

∂λα∂λβ

D̂αβ

]
W. (17)

Without absorption (a = 0), this reduces to theDMPK equation of [8, 9].

4. Stationary solution of the Fokker–Planck equation

The Fokker–Plank equation, (17), has a stationary solution in the limit of long samples
(t → ∞). In this limit, the matrixu appearing in the polar decomposition ofr ′ (equation (9))
has a uniform distribution onU(N). This fact combined with knowledge of the distribution,
W(λ), provides a complete characterization of scattering properties. This limit is, of course,
non-trivial only in the presence of absorption: without it, allλα diverge witht , 3 → 1 and
r ′ → uuT.

The stationary solution is obtained most transparently by transforming to variables in
which the diffusion coefficient is constant, rather than a function of the coordinates. We
therefore substitute for{λα} in terms of{xα} via

λα = 1
2[cosh(2xα) − 1] . (18)

In these coordinates the drift and diffusion coefficients,Dα andDαβ are

Dα = −1

2

∂V

∂xα

(19)

and

Dαβ = 1
2δαβ (20)

where

V =
∑

α

U1(xα) +
∑
α<β

U2(xα, xβ) (21)

with

U1(x) = [a(N + 1) cosh(2x) − ln | sinh(2x)|] (22)

and

U2(x, y) = ln | cosh(2x) − cosh(2y)|. (23)

It follows immediately [16] that the limiting distribution,W ′(x) is

W ′ = exp(−V ). (24)

Distributions of this kind have been studied extensively in connection with random
matrix theory and, in particular, the global maximum entropy approach to disordered
conductors [7]. In the terminology of that approach, equations (21) and (24) describe
the statistical mechanics ofN classical particles moving in one dimension, with coordinates
{xα}, under the influence of a one-body confining potential,U1(x), and a repulsive two-
body interaction,U2(x, y). Since the interaction has the same form as occurs in the global
maximum entropy approach, our result corresponds in that language simply to a particular
choice of one-body potential. It should be emphasized, however, that whilst the global
maximum entropy approach provides only an approximate treatment of scattering without
absorption, equation (24) is anexactsolution for our model of scattering in the presence of
absorption.
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As W ′(x) is a joint distribution forN variables, some further effort is required to obtain
from it physically observable quantities. To do so, we take over an approach developed in
random matrix theory. Suppose that absorption is not too weak and the number of channels
is large, so thataN � 1. Then one expects thexα ’s typically to be closely spaced, with a
densityNρ(x). In this continuum approximation

V = N

∫ ∞

0
U1(x)ρ(x) dx + N2

2

∫ ∞

0

∫ ∞

0
ρ(x)U2(x, y)ρ(y) dx dy. (25)

The most probable density,ρ0, is the one that minimizesV

∂V

∂ρ

∣∣∣∣
ρ=ρ0

= 0. (26)

From this we obtain an integral equation forρ0(x), satisfied in the range, 0< x < xmax,
over whichρ0(x) is non-zero. Neglecting terms inU1(x) small compared toaN∫ ∞

0
dy

ρ0(y)

cosh(2x) − cosh(2y)
= a. (27)

The solution of this equation can be written most simply after transforming back to the
coordinatesλ; in these variables we findρ0(λ) = 0 for λ < 0 or λ > λmax and

ρ0(λ) = 2a

π

(
a−1 − λ

λ

)1/2

(28)

for 0 < λ < λmax, with λmax = 1/a. We note that the expected behaviour in the absence
of absorption,λα → ∞, is recovered fora → 0: λmax diverges andρ0(λ) falls to zero.
Conversely, in the strong-absorption limit,a → ∞, all λα are zero, and the reflection matrix
vanishes. The continuum treatment should be reliable providedNρ0(λ) � 1 in the region
where it is non-zero: the condition for this isaN � 1, as anticipated.

Various physical quantities can be calculated from the limiting density,ρ0(λ). For
example, the reflection probability (into any outgoing channel) for a wave incident (in
channelα) on a semi-infinite sample is

R =
∑

β

|r ′
αβ |2. (29)

Its average value is (within the continuum approximation)

〈R〉 =
∫ ∞

0
ρ0(λ)

λ

1 + λ
dλ (30)

from which we obtain

〈R〉 = 1 + 2a − 2(a + a2)1/2. (31)

The reflection probability falls to zero for strong absorption, as〈R〉 ∼ 1/4a, since in this
limit any reflection that takes place must occur within a surface layer with thickness of the
order of an absorption length, 1/a, and the probability for this to happen is proportional to the
thickness. With weak absorption, the reflection probability approaches 1, as 1−〈R〉 ∼ 2a1/2.
To interpret this result [2], consider first a system offinite length, without absorption.
Recall that the reflection probability,R(L), for a non-absorbing system of lengthL satisfies
1 − R(L) = l/L, wherel is the mean free path for scattering, provided localization effects
are unimportant. A reflected wavepacket that propagates diffusively within the system will
travel a maximum distance of orderL2/l before reflection. Suppose now that absorption
occurs, with an absorption length 1/a. R will be almost unchanged ifL2/l � 1/a; on
increasingL, the crossover from reflection limited by sample length to reflection limited
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by absorption occurs atL2/l ∼ 1/a. At this length, 1− R ∼ [al]1/2, which is the result
obtained from (31) since, in defining the model, we have usedl as the unit of length.

Sample-to-sample fluctuations in reflection properties are also calculable using
established methods. Within the continuum treatment, one can show with the approach
of Beenakker [17] that fluctuations of the densityρ(λ) about the most probable value,
ρ0(λ), are Gaussian. The simplest physical quantity influenced by these fluctuations alone
is the reflection probability, summed over both ingoing and outgoing channels

R̂ =
∑
αβ

|r ′
αβ |2. (32)

Its fluctuations are closely analogous to fluctuations of the conductance in mesoscopic
conductors. ForN � 1 anda � 1, the results of [17] imply a value for the variance ofR̂

that is independent of〈R〉
〈[R̂ − 〈R̂〉]2〉 = 1

8. (33)

5. Summary

In this paper we have shown how theDMPK equation is modified in the presence of
absorption. Absorption changes profoundly the behaviour of the solution to theDMPK

equation. Without absorption, no limiting solution exists and the variables parametrizing
scattering diverge with system length. With absorption, the equation has a non-trivial
limiting solution. For a system withN scattering channels, this solution is a function of
N variables and characterizes completely the reflection properties in the semi-infinite limit.
Remarkably, it is possible to obtain the limiting solution explicitly. From it, we have
calculated, for systems with many channels and weak absorption, the mean and variance
of the reflection probability. We leave as an interesting open problem the calculation of
transmission amplitudes for the same model, which, with absorption, are no longer simply
related to the reflection properties.
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